Rutgers University: Algebra Written Qualifying Exam January 2006: Day 1 Problem 5 Solution

Exercise. Prove that, for any group G, the set of all automorphisms of the form $\phi(G) = xgx^{-1}$, $x \in G$ is a normal subgroup of the group of all automorphisms of G.

Solution.
Prove subgroup:
Let $S = \{\phi \in Aut(G) : \phi(g) = xgx^{-1}, x \in G\}$
Obviously $S \subseteq Aut(G)$.
If $\phi_1, \phi_2 \in S$, then $\phi_1(g) = x_1 g x_1^{-1}$ and $\phi_2(g) = x_2 g x_2^{-1}$ for some $x_1, x_2 \in G$
$\phi_2 \circ \phi_1(g) = \phi_2(x_1 g x_1^{-1})$
$= x_2 x_1 g x_1^{-1} x_2^{-1}$
$= (x_2 x_1) g(x_2 x_1)^{-1}$ and $x_2 x_1 \in G$
$\implies \phi_2 \circ \phi_1 \in S$
Also, $\phi_1^{-1}(g) = x_1^{-1}gx_1$
$= (x_1^{-1})g(x_1^{-1})^{-1}$ and $x_1^{-1} \in G$
$\implies \phi_1^{-1} \in S$
Thus, S is a subgroup of $Aut(G)$.
Prove Normal: S is normal in $Aut(g)$ if for any $\psi \in Aut(G)$, $\phi_1 \in S$, there exists $\phi_2 \in S$ such that
$\psi \circ \phi_1(g) = \phi_2 \circ \psi(g)$
$\psi \circ \phi_1(g) = \psi(x_1 g x_1^{-1})$
$=_1)psi(g)[\psi(x_1)]^{-1}$ since ψ is a homomorphism
$= x_3 \psi(g) x_2^{-1}$ for $x_2 = \psi(x_1) \in G$ since ψ an automorphism
$=\phi_2 \circ \psi(g)$ where $\phi_2 = x_1 = x_2 g x_2^{-1}$ and $x_2 \in G$
$\implies \phi_2 \in S$
Thus, S is a normal subgroup of $Aut(G)$